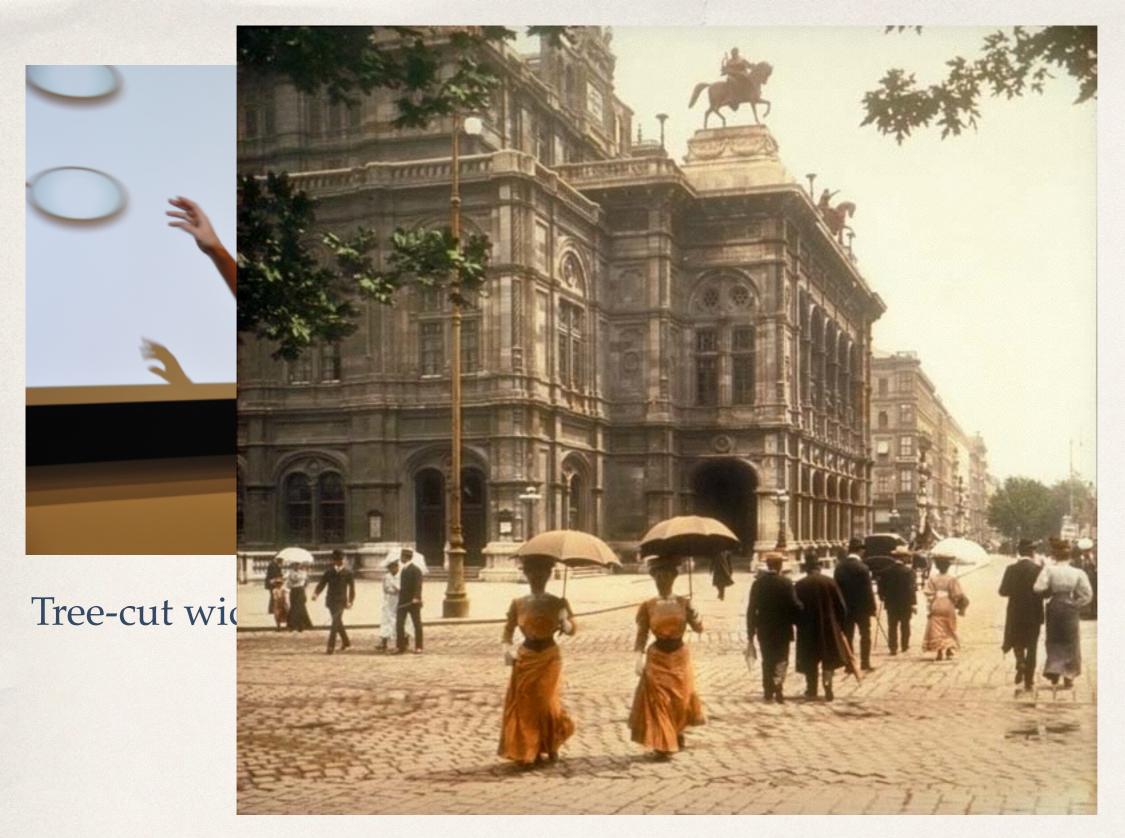
Tree-cut Width: Computation and Algorithmic Applications

Eun Jung Kim, CNRS - Paris Dauphine University

AGTAC, Koper, Slovenia 17 June 2015

Tree-cut width proposed by Paul Wollan, 2013



Algorithmic application of tree-cut width joint-work with Robert Ganian and Stefan Szeider.

Constructing a tree-cut decomposition joint-work with Sang-il Oum, Christophe Paul, Ignasi Sau and Dimitrios Thilikos.

Tree-cut wic

Algorithn joint-work wit

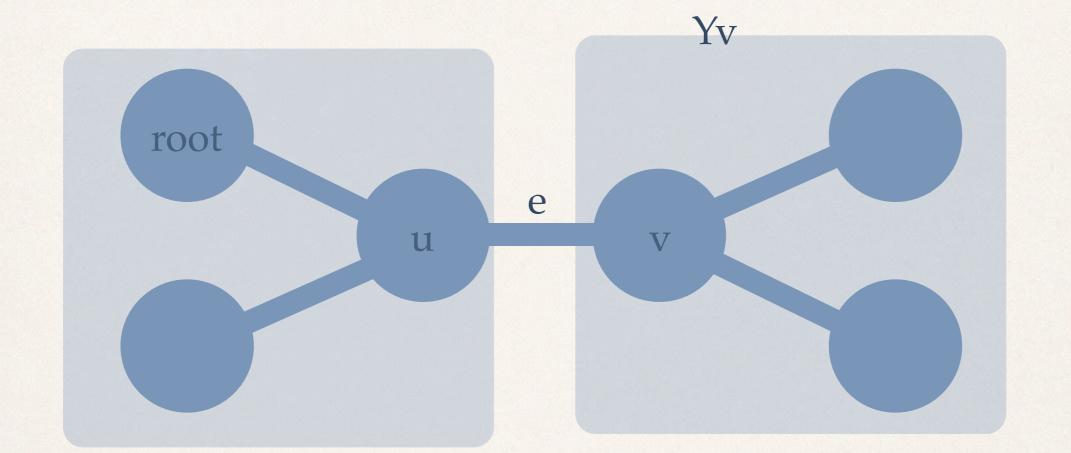
Tree-cut decomposition

[Marx&Wollan 2014, Wollan 2015]

(T, $\chi = \{Xt, t \in V(T)\}$) is a tree-cut decomposition of G if

- T is a tree
- χ forms a <u>near-partition</u> of V(G)

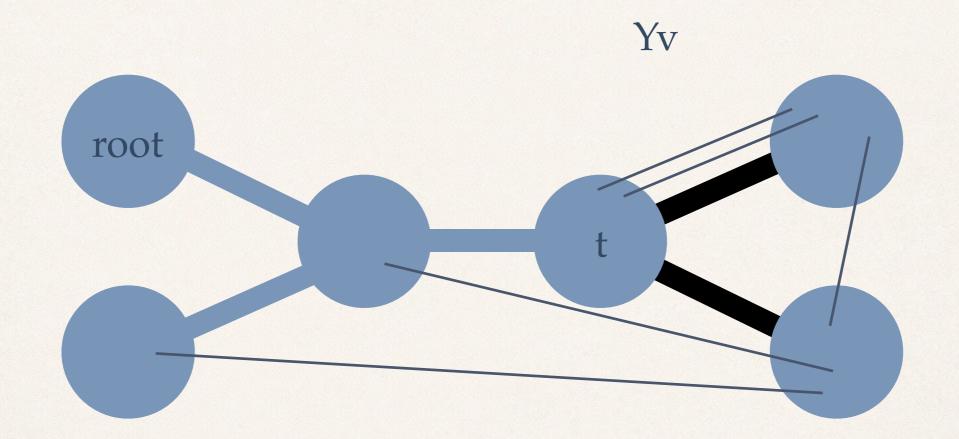
Tree-cut width: (1) cut



cut(e) = the set of edges with one point in Yv and another in V(G)-Yv

Tree-cut width: (2) torso

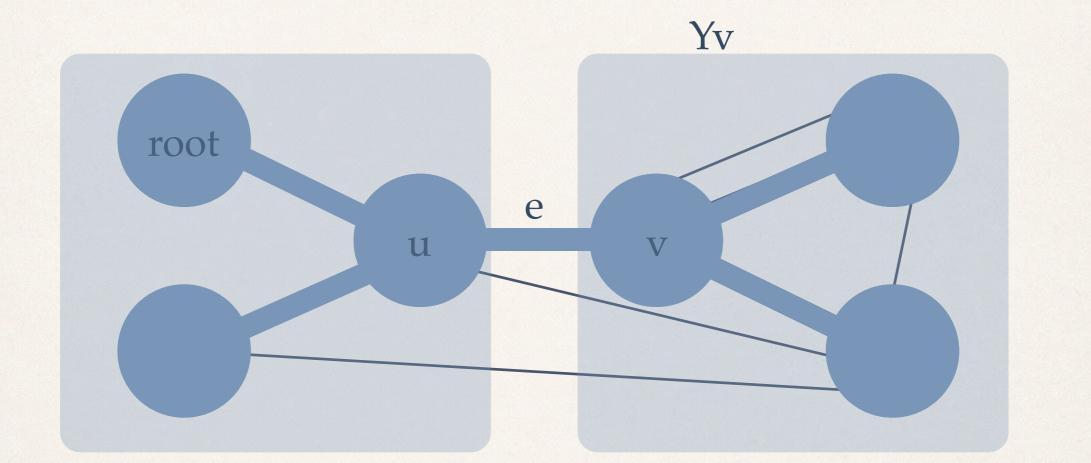
3-edge-connected case



Rt = all neighboring tree nodes of t|torso(t)| = |Xt| + |Rt|

Tree-cut width: (3) width

3-edge-connected case



cut(e) = the set of edges with one point in Yv and another in V(G)-Yv Rt = all neighboring tree nodes of t |torso(t)| = |Xt| + |Rt|

Tree-cut width: (3) width

3-edge-connected case

width(T,χ) = max {| cut(e)|, | torso(t)|} tcw(G) = min width(T,χ)

Yv

cut(e) = the set of edges with one point in Yv and another in V(G)-YvRt = all neighboring tree nodes of t torso(t) = |Xt| + |Rt|

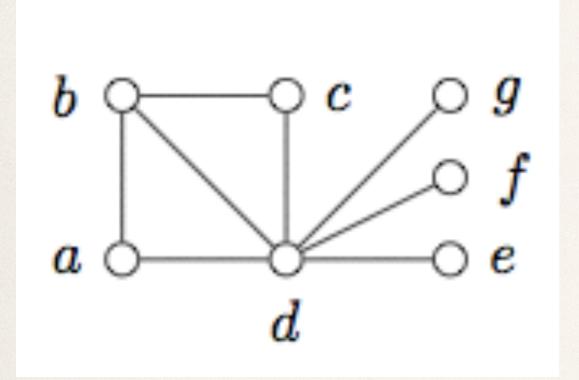
Tree-cut width: (3) width

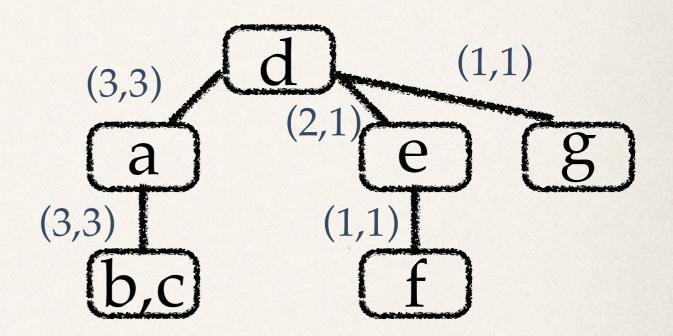
general case

Yv

cut(e) = the set of edges with one point in Yv and another in V(G)-YvRt = all neighboring tree nodes of t torso(t) = |Xt| + |Rt|

Tree-cut width: (4) example

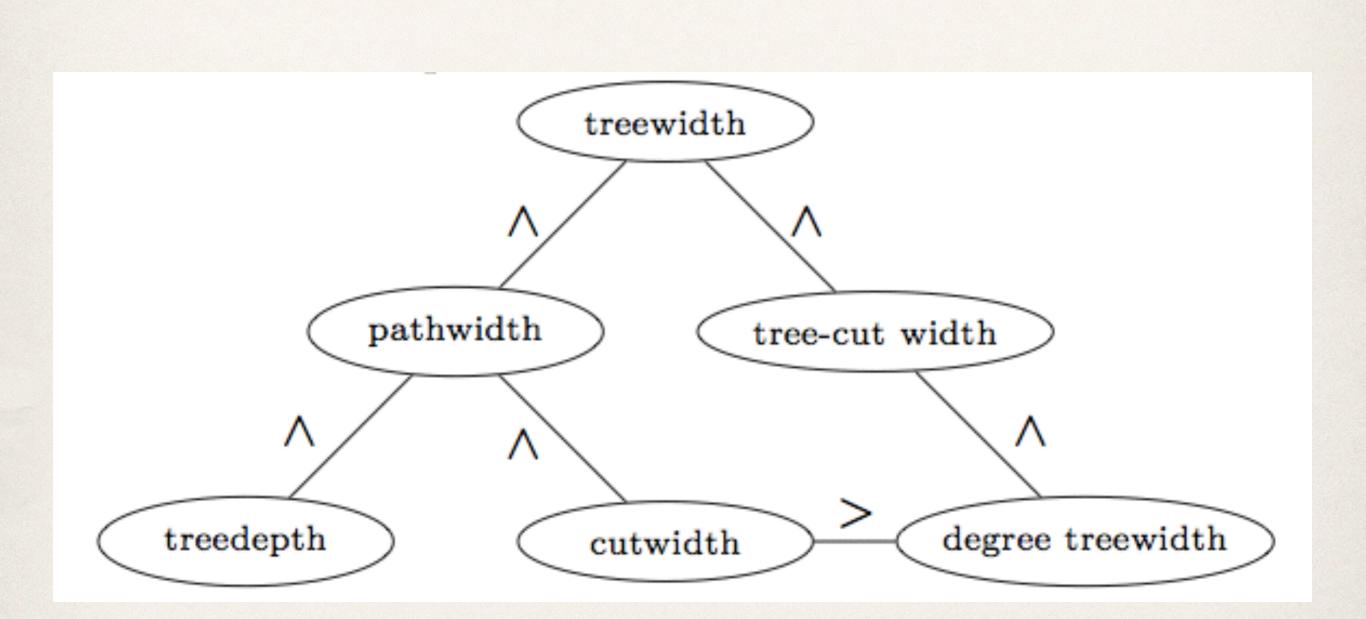




cut(t) = cut(e) where e=(t,p(t))

width = 3

Relations with other width measures



Tree-cut width for algorithms?

- Tree decomposition turned out to be a successful tool for algorithms design
- * How about tree-cut decomposition?
 - * tw = O(tcw^2): having small tcw is stronger than small tw
 - Intractable problems on graph with small tw may have hope on graph with small tcw

Algorithmic applications with Robert Ganian and Stefan Szeider

	Parameter		
Problem Capacitated Vertex Cover Capacitated Dominating Set Imbalance List Coloring Precoloring Extension Boolean CSP	treewidth W[1]-hard ^[7] W[1]-hard ^[7] Open ^[28] W[1]-hard ^[11] W[1]-hard ^[11] W[1]-hard ^[35]	tree-cut width $FPT^{(Thm 9)}$ $FPT^{(Thm 23)}$ $FPT^{(Thm 16)}$ $W[1]$ -hard $^{(Thm 24)}$ $W[1]$ -hard $^{(Thm 24)}$ $W[1]$ -hard $^{(Thm 25)}$	max-degree and treewidth FPT FPT FPT ^[28] FPT ^(Obs 4) FPT ^(Obs 4) FPT ^(Obs 4) FPT ^[35]

FPT w.r.t. parameter k means there is a f(k)poly(n)-algorithm. W[1]-hard means f(k)poly(n)-algorithm is unlikely.

Computing a tree-cut decomposition

* QUEST: design an algorithm which answers the question exactly

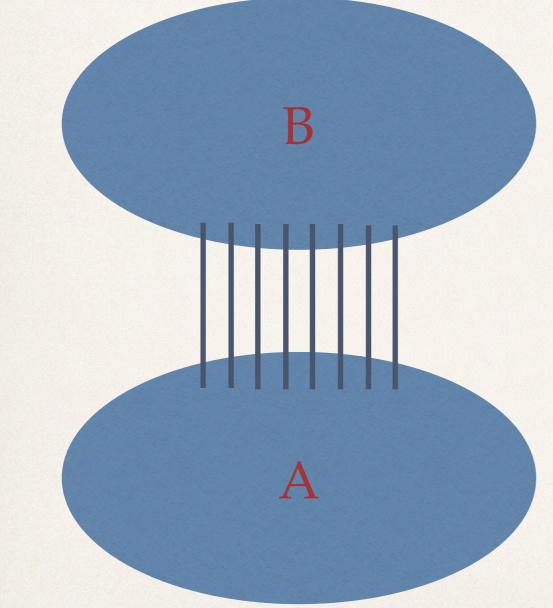
- Given a graph G: produce a tree-cut decomposition of width at most k or declare that tcw > k.
- * ...and which runs as quickly as possible

- * Deciding if tcw \leq k is NP-complete: from min bisection
- Exact computation: non-uniform, non-constructive
 - * Graphs of tcw ≤ k are closed under immersion [Wollan 2015]
 - * Graphs are w.q.o. under immersion [N.Robertson, P.D.Seymour 2010]
 - * W.Q.O. of immersion implies a finite characterization by forbidden immersions. [N.Robertson, P.D.Seymour 2010]
 - Immersion testing can be done in f(k)poly(n)
 [M. Grohe, K.-i. Kawarabayashi, D. Marx, and P. Wollan 2011]
- Approximation
 - 2-approximation in time 2^O(k^2 · logk) · n^2
 [by E.J.Kim, S.Oum, C.Paul, D.Thilikos, I.Sau 2015]

Computing a tree-cut decomposition

* QUEST: design an algorithm which answers the question exactly

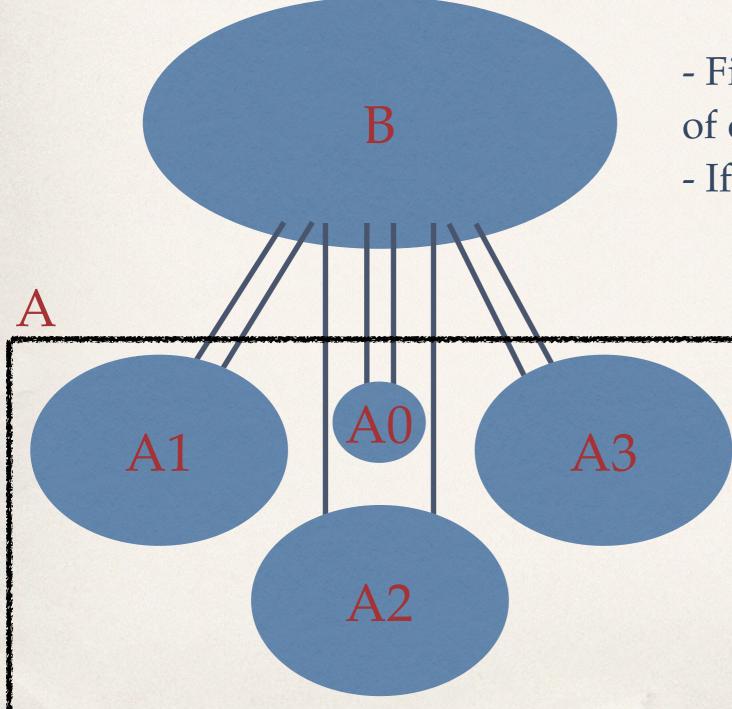
- Given a graph G: produce a tree-cut decomposition of width at most k or declare that tcw > k.
 2k
- * ...and which runs as quickly as possible.



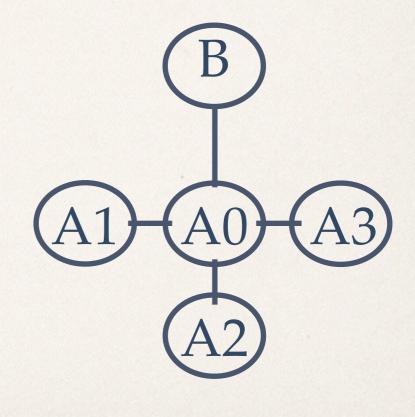
Find a random cut (A,B) of size ≤ 2k
This corresponds to a decomposition

 $(T, \chi = \{Xt, t \in V(T)\})$

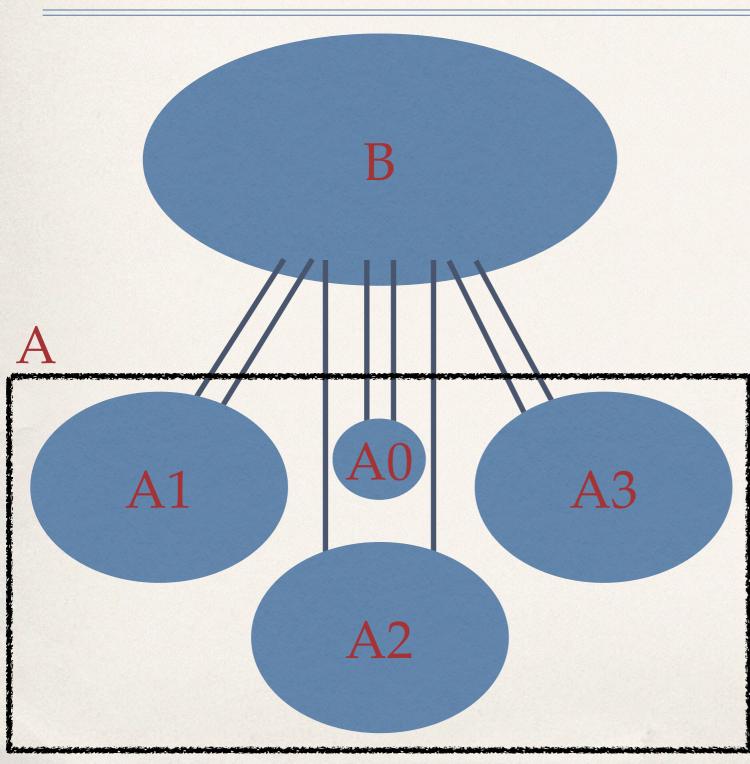
Currently, too large bags.
Idea: "Grow" the tree,
"Reduce" the bag sizes.



- Find a partition of A meeting a set of conditions (*)
- If such a partition exists refine A

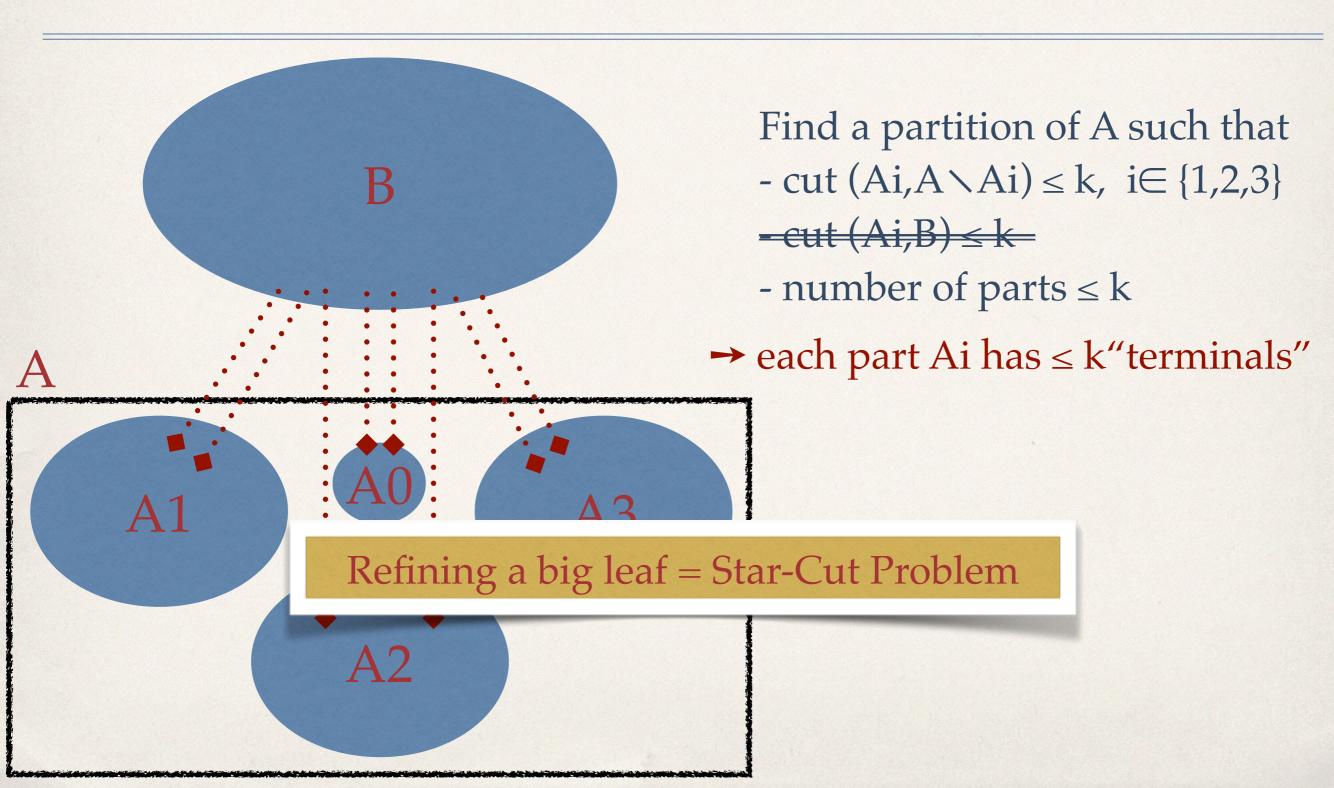


 $(T, \chi = \{Xt, t \in V(T)\})$



Find a partition of A such that - cut $(Ai, A \setminus Ai) \le k$, $i \in \{1, 2, 3\}$ - cut $(Ai, B) \le k$

- |A0| + number of parts $\leq k$



Algorithm for Star-Cut

- Fact - tw $\leq 3tct$
 - 5-approx
- Algorithn1. Run Bo
 - 2. Dynam
- Iteratively solve Star-cut to refine the initial tree-cut decomposition. The entire routine runs in $k^O(k^2) \cdot n \cdot n$

ender et al. 2013

nost 15k^2

> k

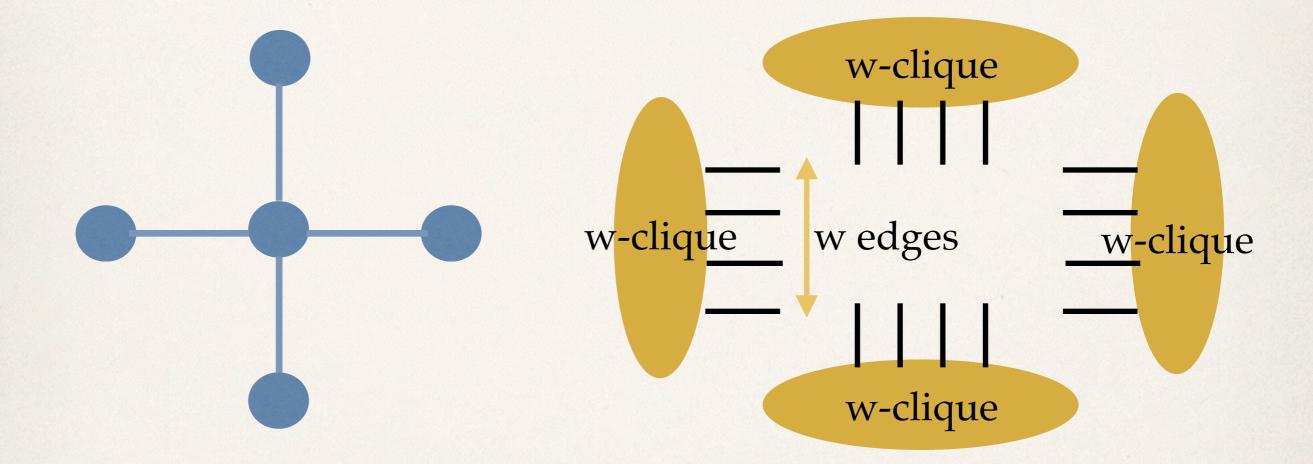
- for each of 15k^2 vertices, guess 'i' s.t. v belongs to Ai
- keep track of <u>#cut (Ai,A\Ai)</u> and <u>#terminals in Ai</u>
- runtime: k^(bagsize) n

Tree-cut width vs treewidth

- * Can the above algorithm be improved? DP can be improved?
- * $tw = O(tcw^2)$: in fact the binding function is tight.
- * There is an infinite family of graphs whose tree-cut width is w, and treewidth is $\Omega(tcw^2)$.

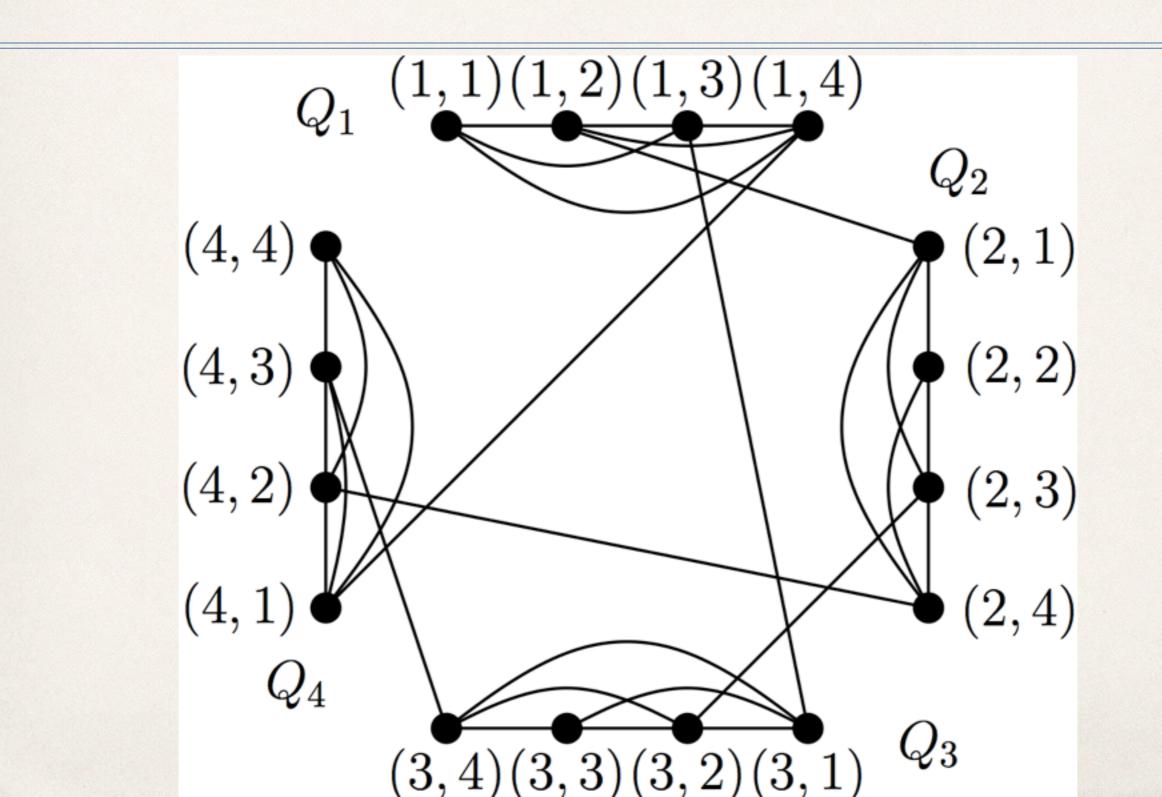
Graphs with tw= $\Omega(tcw^2)$

We want to build a graph with tree-cut width w+1



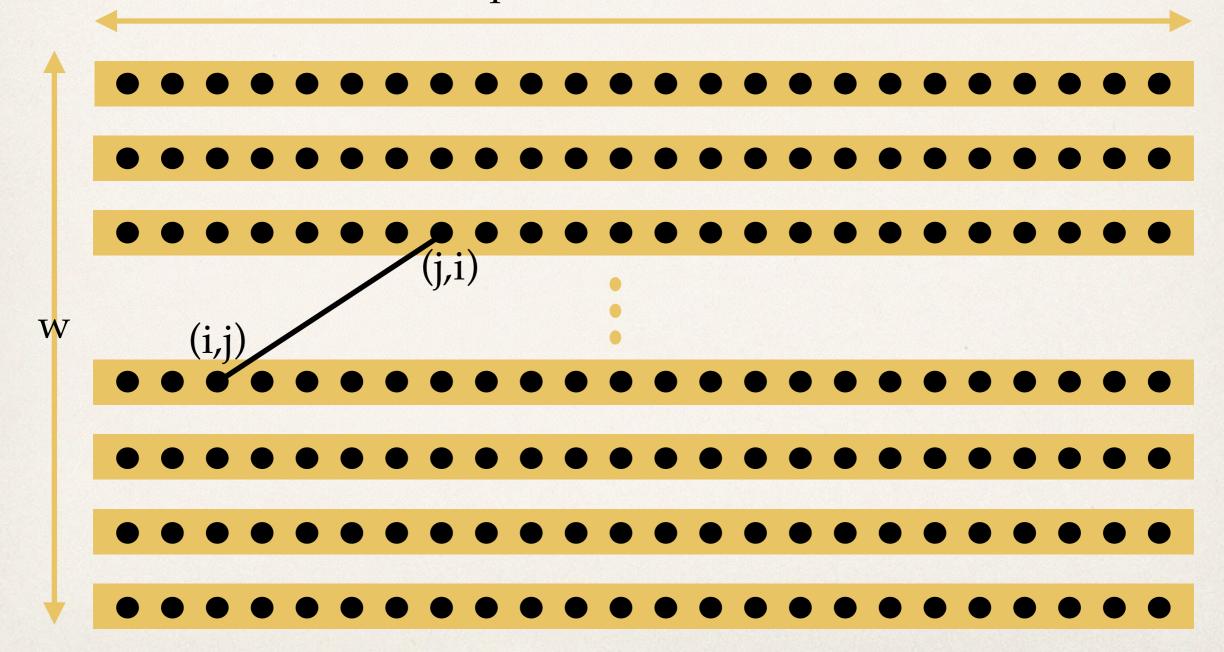
...which looks as simple as possible, while its treewidth is as large as possible.

Graphs with tw= $\Omega(tcw^2)$



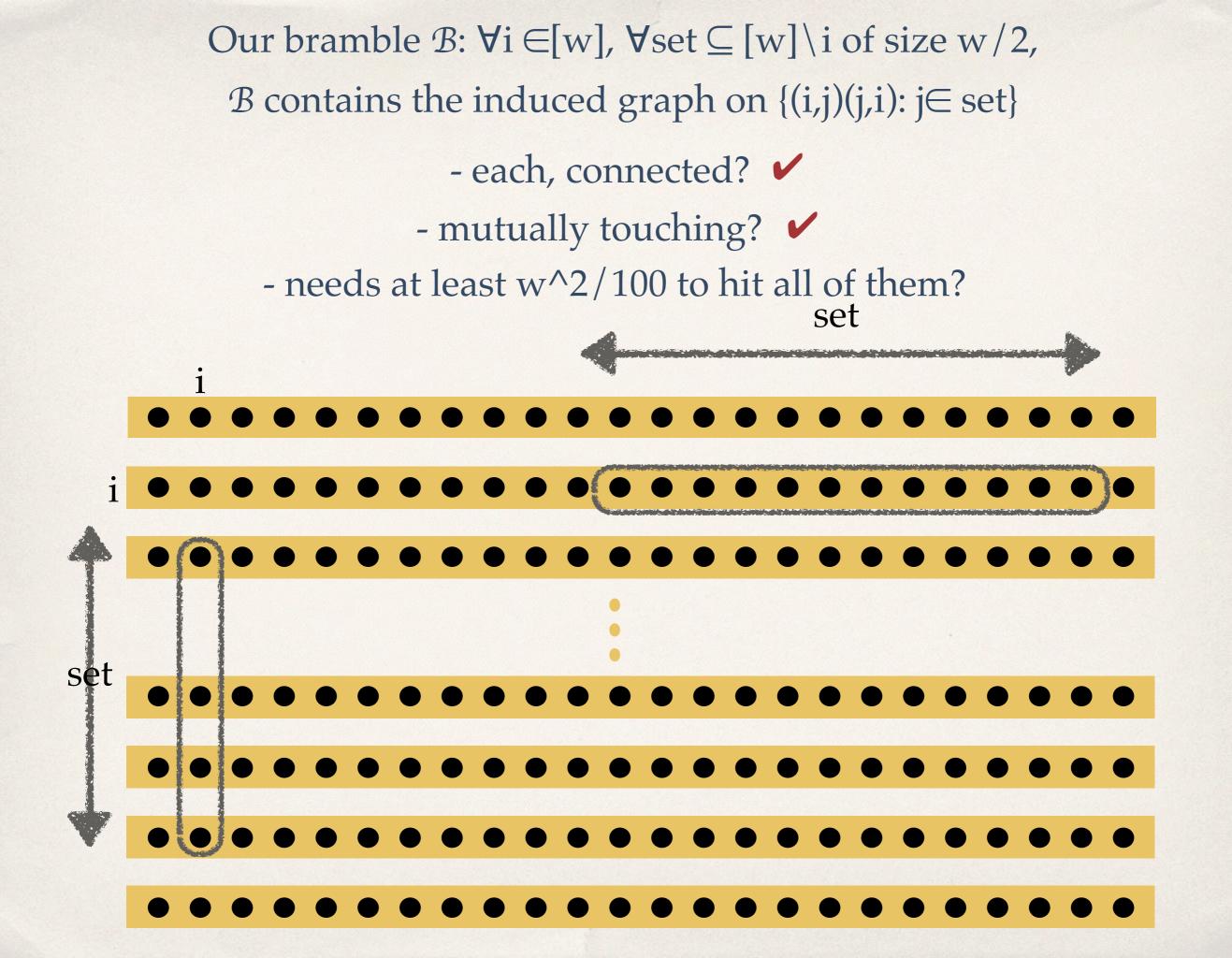
Graphs with tw= $\Omega(tcw^2)$

cliques on w vertices



Proving lower bound for tw

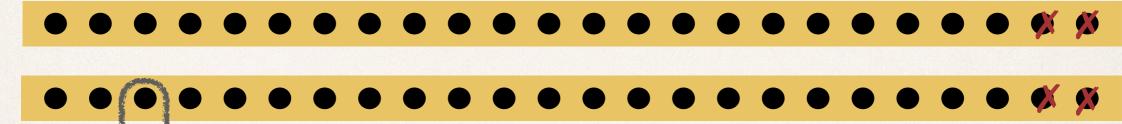
- Bramble B of G: a collection of connected subgraph of G, mutually "touching" each other, i.e. intersecting or adjacent.
- Order of Bramble B: minimum size of a hitting set
- * THM [Seymour and Thomas 93]: tw \geq order of <u>any</u> bramble 1
- * Goal: construct a bramble whose order is w^2/100

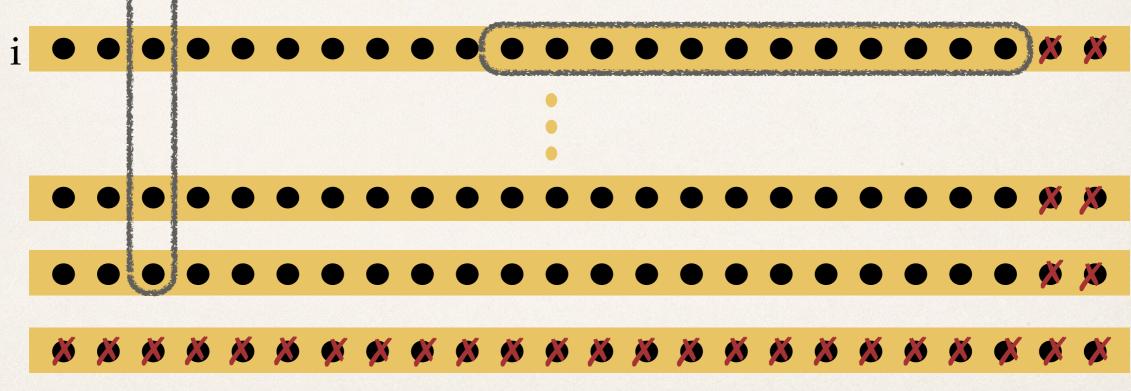


Let X be a hitting set < w^2/100 What if X is randomly distributed... In real life:

you can find many rows "i" where still many vertices survive.
among such "i", you can find one column i* whose common

survivor with row i* is still many.





Further Questions

- For problems hard on graphs with small tw: are there problems showing different computational behavior on small pw and small tcw? e.g. CDC/CVC and boolean CSP
- Our algorithms run in time k^poly(k)
 Better running time? Or optimal?
 further conditions on graphs to accelerate the runtime?
- 2-approximation runs in w^O(w^2).
 Faster algorithm? exact computation?
- * In the end, is tree-cut width an interesting graph

Thanks!